Homework (1)

1) Find all prime and maximal ideals in Z_{6} and $Z_{2} \times \mathbb{Z}_{4}$. $Z_{6}=\{0,1,2,3,4,5\}$ is a commutative ring with unity.

$\odot \bmod 6$	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

$<0\rangle=\{0\} \quad$ is neither prime nor maximal ideal $\quad\left(Z_{6}\right.$ is not integral domain) $\langle 1\rangle=\langle 5\rangle=Z_{6}$ (generators). Again neither prime nor maximal.
$<2>=<4>=\{0,2,4\} \quad \Rightarrow$ Prime ideal.
$\langle 3\rangle=\{0,3\} \quad \Rightarrow$ Prime ideal.
To find out the maximal:

Remember: In a commutative ring with 1, every maximal ideal is prime. (The converse is not true. For example: <0> is prime in integral domains, but clearly not maximal).
$Z_{2} \times Z_{4}=\{(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3)\}$ is
commutative ring with unity. (Not integral domain: $(0,2)(0,2)=(0,0)$)
$<(0,0)>$ is neither prime nor maximal ideal
$<(1,1)>=<(1,3)>=Z_{2} \times Z_{4}$ again neither prime nor maximal ideal
$<(0,1)>=\{(0,0),(0,1),(0,2),(0,3)\}=<(0,3)>$ (Maximal)
$<(1,2)>=\{(0,0),(0,2),(1,0),(1,2)\} \quad$ (Maximal)
$<(0,2)>=\{(0,0),(0,2)\} \quad$ (Not maximal since $\langle(0,2)\rangle \subset<(0,1)>)$
$<(1,0)>=\{(0,0),(1,0)\} \quad$ (Not maximal since $\langle(1,0)\rangle \subset<(1,2)>)$
Or:
By Theorem: Let R be a commutative ring with $1 \in R$; and M be an ideal of R. Then M Is maximal (prime) ideal $\Leftrightarrow R / M$ is a field (integral domain)
So we must find all M for which $Z_{2} \times Z_{4} / M$ is an integral domain. But if M is proper and nontrivial, then $Z_{2} \times Z_{4} / M$ as an Abelian group, is isomorphic to one of
the following: $Z_{2}, Z_{4}, Z_{2} \times Z_{2}$. The only integral domain is Z_{2}. So $|M|$ should be "4" which makes M isomorphic to either $Z_{2} \times Z_{2}$ or Z_{4}. This M will be both prime and maximal ideal. So, $M=\langle(\mathbf{0}, \mathbf{1})\rangle$ or $M=<(\mathbf{1}, \mathbf{2})\rangle$.
2) Find all $c \in Z_{3}$ such that $Z_{3} /<x^{2}+1>$ is a field.

Using the following theorems:
(i) Let F be a field and let I be an ideal of the polynomial ring $F[x]$. Then

1. I is maximal if and only if $I=\langle p(x)\rangle$ for some irreducible polynomial $p(x)$ in $F[x]$.
2. I is prime if and only if $I=\{0\}$ or $I=<p(x)>$ for an irreducible $p(x) \in F[x]$.
(ii) Let R be a commutative ring with $1 \in R$; and M be an ideal of R. Then M is maximal ideal $\Leftrightarrow R / M$ is a field
$\left.\therefore Z_{3}[\mathrm{x}] /<\mathrm{x}^{2}+\mathrm{c}\right\rangle$ is a field $\Leftrightarrow\left\langle\mathrm{x}^{2}+\mathrm{c}\right\rangle$ is maximal ideal. $\left\langle x^{2}+c>\right.$ is maximal ideal iff $\mathrm{x}^{2}+\mathrm{c}$ is irreducible.
The possibilities are:
$p(x)=x^{2} \quad$ then, $p(0)=0 \Rightarrow p(x)$ is reducible $\Rightarrow\left\langle x^{2}\right\rangle$ is not maximal.
$p(x)=x^{2}+1 \quad$ then, $p(0)=1, p(1)=2$, and $p(2)=2 \Rightarrow p(x)$ is irreducible $\Rightarrow<\mathrm{x}^{2}+1>$ is a maximal ideal $\Rightarrow Z_{3}[\mathrm{x}] /<\mathrm{x}^{2}+1>$ is a field
$p(x)=x^{2}+1 \quad$ then, $p(1)=0 \Rightarrow p(x)$ is reducible $\Rightarrow\left\langle x^{2}+2\right\rangle$ is not maximal.
Therefore, $\mathrm{c}=1$.
3) Show that N is a maximal ideal in a ring $R \Leftrightarrow R / N$ is a simple ring. Let R be a commutative ring with $1 \in R$.
If N is a maximal ideal in R, then by theorem, R / N is a field.
$\Rightarrow R / N$ is also a commutative ring with unity ($1+N$)
So by theorem 1.3.16, R / N is a field $\Leftrightarrow R / N$ is simple.
Therefore, N is a maximal ideal in $R \Leftrightarrow R / N$ is a simple ring.
4) Let A and B be ideals of a commutative ring . the quotient $A: B$ of A by B is defined by A : $B=\{r \in R: r b \in A \forall b \in B\}$. Show that $A: B$ is an ideal of R.
Let $r_{1}, r_{2} \in A: B \quad \Rightarrow r_{1} b \in A \quad \forall b \in B$

$$
\Rightarrow r_{2} b \in A \quad \forall b \in B
$$

i. $\quad r_{1}-r_{2} \in A: B$?
(We have to show $\left.\left(r_{1}-r_{2}\right) b \in A \quad \forall b \in B\right)$
Let $b \in B$, consider,
$\left(r_{1}-r_{2}\right) b=r_{1} b-r_{2} b \in A \quad$ (since $r_{1} b \in A$ and $r_{2} b \in A$ and A is an ideal)
Since b is arbitrary
$\therefore\left(r_{1}-r_{2}\right) b \in A \quad \forall b \in B \quad \Rightarrow \quad r_{1}-r_{2} \in A: B$
ii. Let $s \in R$. $\quad s r_{1}=r_{1} s \in A: B$?

Consider,
$\left(r_{1} s\right) b=\left(s r_{1}\right) b=s\left(r_{1} b\right) \in A \quad$ (since A is an ideal and $\left.r_{1} b \in A\right)$
$\therefore\left(s r_{1}\right) b=\left(r_{1} s\right) b \in A \quad \forall b \in B \quad \Rightarrow \quad s r_{1}, r_{1} s \in A: B$
5) Find all zero divisors; and nonzero idempotent, units and nilpotent elements in $Z_{3} \oplus Z_{6}$.
$Z_{3} \oplus Z_{6}=\{(0,0),(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4)$, $(1,5),(2,0),(2,1),(2,2),(2,3),(2,4),(2,5)\}$
(i) Zero Divisors:
(we have to find: $\left(r_{1}, s_{1}\right) \neq(0,0)$ and $\left(r_{2}, s_{2}\right) \neq(0,0)$ s.t. $\left.\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)=(0,0)\right)$
Since: $(0,2)(0,3)=(0,0)$
$(0,3)(0,4)=(0,0)$
\therefore The zero divisors are: $(0,2),(0,3)$ and $(0,4)$
(ii) Idempotent Elements: $\left(a \neq 0 \quad\right.$ s.t. $\quad a^{2}=a$?)

Since: $(0,1)(0,1)=(0,1)$
$(0,3)(0,3)=(0,3)$
$(0,4)(0,4)=(0,4)$
$(1,0)(1,0)=(1,0)$
$(1,1)(1,1)=(1,1)$
$(1,3)(1,3)=(1,3)$
$(1,4)(1,4)=(1,4)$
\therefore The idempotent elements are: $(0,1),(0,3),(0,4),(1,0),(1,1),(1,3)$ and (1,4).
(iii) Nilpotent Elements: ($a^{n}=0$ for some $n \geq 1$?)

Since Z_{3} is an integral domain then it has no nilpotent element.
Then, $(r, s)^{n}=\left(0, s^{n}\right)=(0,0)$. We have to find the nilpotent elements in Z_{6}.
Since the nilpotent elements should be different from the idempotent ones, so
we can eliminate 1,3 and 4 away. (since $3^{n}=3$ and $4^{n}=4 \forall n>1$)
To find the nilpotent elements we should solve the equation $x^{2}=0$ (by
Theorem: \boldsymbol{R} has no nonzero nilpotent elements if and only if 0 is the unique solution of the equation $x^{2}=0$)
If $x=2 \Rightarrow x^{2}=2^{2}=4 \neq 0$
If $x=5 \Rightarrow x^{2}=5^{2}=1 \neq 0$ (unit)
$\therefore 0$ is the unique solution of $\boldsymbol{x}^{2}=\mathbf{0}$
$\therefore Z_{6}$ has no nilpotent elements, so that $Z_{3} \oplus Z_{6}$
(iv) Units: $\quad\left(\left(r_{1}, s_{1}\right)\left(r_{2}, s_{2}\right)=\left(r_{1} r_{2}, s_{1} s_{2}\right)=(1,1)\right.$? $)$

So the units are: $(1,1),(1,5),(2,1)$, and $(2,5)$.
6) Suppose that a and b belong to a commutative ring, and $a b$ is a zero divisor. Show that either \boldsymbol{a} or \boldsymbol{b} is a zero divisor.
Let $a, b \in R$ where R is a commutative ring and $a b$ is a zero divisor such that b is not a zero divisor. (We have to show that a is a zero divisor).

```
\(\Rightarrow \exists 0 \neq x \in R\) s.t. \(x(a b)=0\)
\(\Rightarrow \quad(x a) b=0 \quad\) (So that \((x a)=0)\)
\(\Rightarrow \quad x a=0 \quad\) (Since \(b\) is not a zero divisor)
```

$\therefore \exists 0 \neq x \in R \quad$ s.t. $x a=0=a x \Rightarrow a$ is a zero divisor.
Similarly if a is not a zero divisor, then b will be.
7) Prove that $I=<2+2 i>$ is not a prime ideal of $Z[i]$. What is the characteristic of $Z[i] / I$?
$Z[i]=\{a+b i: a, b \in \mathbb{Z}\}$ is a commutative ring with 1.
Then $I=<2+2 i>$ is prime if $I \neq Z[i]$ and if $a b \in I \Rightarrow a \in I$ or $b \in I \quad \forall a, b \in Z[i]$

$$
\begin{aligned}
I & =\{z(2+2 i): z \in Z[i]\}=\{(a+b i)(2+2 i): a, b \in \mathbb{Z}\} \\
& =\{2(a-b)+2(a+b) i: a, b \in \mathbb{Z}\}
\end{aligned}
$$

But we have:
$(1+3 i)(3+3 i)=(3-9)+(3+9) i=-6+12 i \in I \quad$ where $\quad(1+3 i),(3+3 i) \notin I$ $\therefore \exists x y \in I \quad$ s.t. $x \notin I$ and $y \notin I \Rightarrow I$ is not prime.
$Z[i] / I=\{(a+b i)+I: a, b \in \mathbb{Z}\}=\{I, 1+I, 2+I, 3+I,(1+i)+I, i+I, \ldots\}$. The characteristic of $Z[i] / I$ is " 4 ".

- How to deal with the Gaussian Integers? Page 5

8) Show that $Z_{3}[X] /<x^{2}+x+1>$ is not a field.

Since $(x+2) \in Z_{3}[\mathrm{X}] \Rightarrow(\mathrm{x}+2)+I \in Z_{3}[\mathrm{X}] / I \quad$ where $I=\left\langle\mathrm{x}^{2}+\mathrm{x}+1\right\rangle$
But,
$((x+2)+I)((x+2)+I)=\left(x^{2}+x+1\right)+I=<\mathrm{x}^{2}+\mathrm{x}+1>=I$
$\therefore(x+2)+I$ is a zero divisor $\Rightarrow Z_{3}[X] / I$ is not a field.
9) Prove that M is a maximal ideal in a commutative ring R with unity iff $\forall x \notin M \exists r \in R$ such that $1+r x \in M$.
" \Rightarrow "
Let M be a maximal ideal in a commutative ring R with unity.
Let $x \notin M$.
Construct $I=\{m+x r: \quad m \in M, \quad x \notin M\}$. Then I is an ideal of R.
(Let $z, y \in I, \quad \grave{r} \in R \Rightarrow y=m_{1}+x r_{1}$ and $z=m_{2}+x r_{2}$
i. $\quad y-z=m_{1}+x r_{1}-\left(m_{2}+x r_{2}\right)=\left(m_{1}-m_{2}\right)+x\left(r_{1}-r_{2}\right) \in I$

Since $m_{1}-m_{2} \in M$ (M is an ideal)
ii. $\quad y \grave{r}=\grave{r} y=\grave{r}\left(m_{1}+x r_{1}\right)=\grave{r} m_{1}+\grave{r}\left(x r_{1}\right)=\grave{r} m_{1}+x\left(\grave{r} r_{1}\right) \in I$ Since $\dot{r} m_{1} \in M\left(M\right.$ is an ideal) and $\left.\left.\dot{r} r_{1} \in R\right)\right)$

Therefore, I is an ideal of R such that $M \subset I \subseteq R$.
i. $\quad m \in M \Rightarrow m=m+x .0 \in I$
ii. $\quad x \notin M$ and $x=0+x .1 \in I$ (So that $M \neq I$)

But M is maximal $\Rightarrow I=R \Rightarrow 1 \in I \Rightarrow 1=m+x r \Rightarrow m=1-r x$ $\Rightarrow m=1+\dot{r} x \in M$
$\therefore \forall x \notin M \exists \grave{r} \in R$ such that $1+\grave{r} x \in M$.
" ${ }^{\text {" }}$
Assume that $\forall x \notin M \quad \exists r \in R$ such that $1+r x \in M$.
(We have to prove that M is a maximal ideal)
Let I be an ideal of R such that $M \subset I \subseteq R$. (We have to prove $I=R$).
The proper inclusion implies that $\exists x \in I$ where $x \notin M$.
By given; $\exists r \in R$ such that $1+r x \in M \subset I \Rightarrow m=1+r x \in I$. $\Rightarrow 1=m-r x \in I \quad \Rightarrow \quad I=R \quad \Rightarrow M \quad$ is a maximal ideal of R.

> Since $x \in I$ and I is an ideal $\Rightarrow r x \in I$ also $m \in I \Rightarrow$ $m-r x \in I$ (ideal)

Finding Factor Rings over the Gaussian Integers

He [Gauss] lives everywhere in mathematics. (E.T. Bell, "Men of Mathematics").

Some Important theorems that may help:

- $Z[i]$ is a PID. (i.e. every ideal is principal)
- The characteristic of $Z[i] /<a+b i>\operatorname{divides} a^{2}+b^{2}$.
- $Z[i] /<a+b i>\cong Z[i] /<-a-b i>\cong Z[i] /<b-a i>\cong Z[i] /<-b+a i>$
- If " a " is a positive integer larger than 1 , then

$$
Z[i] /<a>\cong Z_{a}[i]
$$

- If a and b are relatively prime integers, then $Z[i] /<a+b i>\cong Z_{a^{2}+b^{2}}$
- The primes in $Z[i]$ are:
i. $\quad a+b i$ and $b+a i$ where $p=a^{2}+b^{2}$ is prime in \mathbb{Z} and $p \equiv 1(\bmod 4)$
ii. $\quad p$ where p is prime in \mathbb{Z} and $p \equiv 3(\bmod 4)$
iii. $\quad 1+i$
- If a and b are relatively prime integers, then
$a+b i$ is a prime in $Z[i] \Leftrightarrow a^{2}+b^{2}$ is prime in \mathbb{Z}.
- So we can conclude that : $Z[i] / I$ is an integral domain $\Leftrightarrow I$ is a prime ideal \Leftrightarrow i. $\quad I=<a>$ where a is prime in \mathbb{Z} and $a \equiv 3(\bmod 4)$.
ii. $\quad I=<a+b i>$ where a and b are relatively prime integers and $a^{2}+b^{2}$ is prime in \mathbb{Z}.

Back to problem "7", we notice the following:

$(2+2 i)=(2(1+i))$ is not prime in $Z[i] \Rightarrow I=<2+2 i>$ is not a prime ideal in $Z[i] . \quad\left(a=2=b\right.$ not relatively prime and $a^{2}+b^{2}=8($ not prime in $\left.\mathbb{Z})\right)$.

Also we can prove that I is not prime by finding x and y such $x y \in I$ but $x \notin I$ and $y \notin I$

$$
I=<2+2 i>=\{2(a-b)+2(a+b) i: \quad a, b \in \mathbb{Z}\}
$$

$2(1+i)=2+2 i \in I \quad$ But, $2 \notin I$

(Since, we want to find $a, b \in \mathbb{Z}$ s.t $2(a-b)=2$ (1) and

$$
2(a+b)=0
$$

$\Rightarrow a-b=1 \quad \Rightarrow a=1+b \quad$ (From (1))
$\left.\Rightarrow a+b=0 \Rightarrow 1+2 b=0 \Rightarrow b=-\frac{1}{2} \notin \mathbb{Z} \quad \Rightarrow 2 \notin I\right)$

Also, $1+i \notin I$

(Since, we want to find $a, b \in \mathbb{Z}$ s.t $2(a-b)=1$ (1) and

$$
2(a+b)=1
$$

$\Rightarrow a-b=\frac{1}{2} \Rightarrow a=\frac{1}{2}+b \quad($ From (1)) \Rightarrow clearly $a \notin \mathbb{Z} \Rightarrow 1+i \notin I)$

$$
\begin{aligned}
\Rightarrow Z[i] / I & =\{(c+d i)+I: \quad c, d \in \mathbb{Z}\} \\
& =\{2(a-b)+c+(2(a+b)+d) i: \quad a, b, c, d \in \mathbb{Z}\}
\end{aligned}
$$

- Greg Dresden and Wayne M. Dyma`cek, "Finding Factors of Factor Rings over the Gaussian Integers", THE MATHEMATICAL ASSOCIATION OF AMERICA (2005): 602-611
- PETER J. KAHN, "TRISECTION, PYTHAGOREAN ANGLES, AND GAUSSIAN INTEGERS", (2011).
- Rachel Quinlan, his lectures notes as published in http://www.maths.nuigalway.ie/MA416/\#Lecturer.

